lui/ca GUIA DE APOYO Y PREPARACION Azignatura : calculo int Taller 2

INTEGRALES POR SUSTITUCION

EXPLORACIÓN

Reconocimiento de patrones El integrando en cada una de las siguientes integrales corresponde al patrón f(g(x))g'(x). Identificar el patrón y utilizar el resultado para calcular la integral.

a)
$$\int 2x(x^2+1)^4 dx$$
 b) $\int 3x^2 \sqrt{x^3+1} dx$ c) $\int \sec^2 x(\tan x + 3) dx$

Las siguientes tres integrales son similares a las primeras tres. Mostrar cómo se puede multiplicar y dividir por una constante para calcular estas integrales.

d)
$$\int x(x^2+1)^4 dx$$
 e) $\int x^2 \sqrt{x^3+1} dx$ f) $\int 2 \sec^2 x(\tan x+3) dx$

TABLA DE FÓRMULAS DE DERIVACIÓN

$$\frac{d}{dx}(c) = 0 \qquad \qquad \frac{d}{dx}(x^n) = nx^{n-1} \qquad \qquad \frac{d}{dx}(e^x) = e^x$$

$$(cf)' = cf' \qquad \qquad (f+g)' = f'+g' \qquad \qquad (f-g)' = f'-g'$$

$$(cf)' = cf'$$
 $(f+g)' = f'+g'$ $(f-g)' = f'-g'$

$$(fg)' = fg' + gf' \qquad \left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$$

Integrales directas Integrales indirectas

Teorema B Regla de sustitución para integrales indefinidas

Sea g una función derivable y suponga que F es una antiderivada de f. Entonces,

$$\int f(g(x))g'(x) dx = F(g(x)) + C$$

Iui/ca GUIA DE APOYO Y PREPARACION A/ignatura : calculo int

EJEMPLO I Reconocimiento del patrón de f(g(x))g'(x)

Determinar
$$\int (x^2 + 1)^2 (2x) dx$$
.

Solución Tomando $g(x) = x^2 + 1$, se obtiene

$$g'(x) = 2x$$

y

$$f(g(x)) = f(x^2 + 1) = (x^2 + 1)^2.$$

A partir de esto, se puede reconocer que el integrando sigue el patrón f(g(x))g'(x). Utilizando la regla de la potencia para la integración y el teorema 4.13, es posible escribir

$$\int \frac{f(g(x))}{(x^2+1)^2(2x)} \frac{g'(x)}{dx} = \frac{1}{3}(x^2+1)^3 + C.$$

Es fácil comprobar, mediante la regla de la cadena, que la derivada de $\frac{1}{3}(x^2 + 1)^3 + C$ es, en efecto, el integrando de la integral original.

lui/ca GUIA DE APOYO Y PREPARACION Azignatura : calculo int

EJEMPLO 3 Multiplicar y dividir por una constante

Determinar
$$\int x(x^2 + 1)^2 dx$$
.

Solución Esto es similar a la integral dada en el ejemplo 1, salvo porque al integrando le falta un factor 2. Al reconocer que 2x es la derivada de $x^2 + 1$, se toma $g(x) = x^2 + 1$ y se incluye el término 2x de la manera siguiente.

$$\int x(x^2 + 1)^2 dx = \int (x^2 + 1)^2 \left(\frac{1}{2}\right)(2x) dx$$
Multiplicar y dividir entre 2.
$$= \frac{1}{2} \int (x^2 + 1)^2 (2x) dx$$
Regla del múltiplo constante.
$$= \frac{1}{2} \left[\frac{(x^2 + 1)^3}{3}\right] + C$$
Integrar.
$$= \frac{1}{6} (x^2 + 1)^3 + C$$
Simplificar.

En la práctica, la mayoría de la gente no escribiría tantos pasos como los que se muestran en el ejemplo 3. Por ejemplo, podría calcularse la integral escribiendo simplemente

$$\int x(x^2 + 1)^2 dx = \frac{1}{2} \int (x^2 + 1)^2 2x dx$$
$$= \frac{1}{2} \left[\frac{(x^2 + 1)^3}{3} \right] + C$$
$$= \frac{1}{6} (x^2 + 1)^3 + C.$$

2-

Cambio de variables

Con un **cambio de variables** formal se puede reescribir por completo la integral en términos de u y du (o cualquier otra variable conveniente). Aunque este procedimiento puede implicar más pasos escritos que el reconocimiento de patrones ilustrado en los ejemplos 1 a 3, resulta útil para integrandos complicados. La técnica del cambio de variable utiliza la notación de Leibniz para la diferencial. Esto es, si u = g(x), entonces du = g'(x) dx, y la integral en el teorema 4.13 toma la forma

$$\int f(g(x))g'(x) dx = \int f(u) du = F(u) + C.$$

luisca GUIA DE APOYO Y PREPARACION Asignatura : calculo int

EJEMPLO 4 Cambio de variable

Encontrar
$$\int \sqrt{2x-1} \, dx$$
.

Solución Primero, sea u la función interior, u = 2x - 1. Calcular después la dif du de manera que du = 2 dx. Ahora, utilizando $\sqrt{2x - 1} = \sqrt{u}$ y dx = du/2, para obtener

$$\int \sqrt{2x-1} \, dx = \int \sqrt{u} \left(\frac{du}{2}\right)$$
 Integrar en términos de u .
$$= \frac{1}{2} \int u^{1/2} \, du$$
 Regla del múltiplo constante.
$$= \frac{1}{2} \left(\frac{u^{3/2}}{3/2}\right) + C$$
 Antiderivada en términos de u .
$$= \frac{1}{3} u^{3/2} + C$$
 Simplificar.
$$= \frac{1}{3} (2x-1)^{3/2} + C$$
. Antiderivada en términos de x .

EJEMPLO 5 Cambio de variables

Encontrar
$$\int x\sqrt{2x-1} dx$$
.

Solución Como en el ejemplo previo, considerar que u = 2x - 1 para obten du/2. Como el integrando contiene un factor de x, se tiene que despejar x en térn u, como se muestra.

$$u = 2x - 1$$
 \Longrightarrow $x = (u + 1)/2$ Resolver para x en términos de u.

Después de esto, utilizando la sustitución, se obtiene

$$\int x\sqrt{2x-1} \, dx = \int \left(\frac{u+1}{2}\right) u^{1/2} \left(\frac{du}{2}\right)$$

$$= \frac{1}{4} \int (u^{3/2} + u^{1/2}) \, du$$

$$= \frac{1}{4} \left(\frac{u^{5/2}}{5/2} + \frac{u^{3/2}}{3/2}\right) + C$$

$$= \frac{1}{10} (2x-1)^{5/2} + \frac{1}{6} (2x-1)^{3/2} + C.$$

EJEMPLO 6 Cambio de variables

Determinar $\int \sin^2 3x \cos 3x \, dx$.

Solución Debido a que sen² $3x = (\text{sen } 3x)^2$, podemos tomar u = sen 3x. Entonces

$$du = (\cos 3x)(3) dx.$$

Luego, debido a que cos 3x dx es parte de la integral original, puede escribirse

$$\frac{du}{3} = \cos 3x \, dx.$$

a Sustituyendo u y du/3 en la integral original, se obtiene

 $\int \sin^2 3x \cos 3x \, dx = \int u^2 \frac{du}{3}$ $= \frac{1}{3} \int u^2 \, du$ $= \frac{1}{3} \left(\frac{u^3}{3}\right) + C$ $= \frac{1}{9} \sin^3 3x + C.$

3-

La regla general de la potencia para integrales

Una de las sustituciones de *u* más comunes incluye cantidades en el integrando que se elevan a una potencia. Debido a la importancia de este tipo de sustitución, se le da un nombre especial: la **regla general de la potencia para integrales**. Una prueba de esta regla sigue directamente de la regla (simple) de la potencia para la integración, junto con el teorema 4.13.

TEOREMA 4.14 LA REGLA GENERAL DE LA POTENCIA PARA INTEGRALES

Si g es una función derivable de x, entonces

$$\int [g(x)]^n g'(x) dx = \frac{[g(x)]^{n+1}}{n+1} + C, \qquad n \neq -1.$$

De manera equivalente, si u = g(x), entonces

$$\int u^n \, du = \frac{u^{n+1}}{n+1} + C, \qquad n \neq -1.$$

Ji**/ca** GUIA DE APOYO Y PREPARACION A*j*ignatura : calculo int Taller 2

EJEMPLO 7 Sustitución y regla general de la potencia

a)
$$\int 3(3x-1)^4 dx = \int (3x-1)^4 (3) dx = \frac{u^5/5}{5} + C$$

$$\int_{(2n+1)(x^2+x^2)} dx = \int_{(2n+1)(2n+1)} dx = \frac{(x^2+x)^2}{(x^2+x)^2}$$

b)
$$\int (2x+1)(x^2+x) dx = \int (x^2+x)^1 (2x+1) dx = \frac{(x^2+x)^2}{2} + C$$

c)
$$\int 3x^2 \sqrt{x^3 - 2} \, dx = \int (x^3 - 2)^{1/2} (3x^2) \, dx = \frac{(x^3 - 2)^{3/2}}{3/2} + C = \frac{2}{3} (x^3 - 2)^{3/2} + C$$

d)
$$\int \frac{-4x}{(1-2x^2)^2} dx = \int (1-2x^2)^{-2} (-4x) dx = \frac{(1-2x^2)^{-1}}{-1} + C = -\frac{1}{1-2x^2} + C$$

e)
$$\int \cos^2 x \sin x \, dx = -\int (\cos x)^2 (-\sin x) \, dx = -\frac{(\cos x)^3}{3} + C$$

Teorema C Regla de sustitución para integrales definidas

Suponga que g tiene una derivada continua en [a, b], y sea f continua en el rango de g. Entonces

$$\int_a^b f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$$

donde u = g(x).

lui/ca GUIA DE APOYO Y PREPARACION Azignatura : calculo int

4-

Cambio de variable para integrales definidas

Cuando se usa la sustitución de u en una integral definida, muchas veces es conveniente determinar los límites de integración para la variable u en vez de convertir la antiderivada o primitiva de nuevo a la variable x y calcularla en los límites originales. Este cambio de variable se establece explícitamente en el siguiente teorema. La demostración sigue del teorema 4.13 en combinación con el teorema fundamental del cálculo.

TEOREMA 4.15 CAMBIO DE VARIABLE PARA INTEGRALES DEFINIDAS

Si la función u = g(x) tiene una derivada continua en el intervalo cerrado [a, b] y f es continua en el recorrido o rango de g, entonces

$$\int_{a}^{b} f(g(x))g'(x) \ dx = \int_{g(a)}^{g(b)} f(u) \ du.$$

EJEMPLO 8 Cambio de variables

Calcular
$$\int_0^1 x(x^2+1)^3 dx.$$

Solución Para calcular esta integral, sea $u = x^2 + 1$. Después,

$$u = x^2 + 1 \implies du = 2x \, dx.$$

Antes de sustituir, determinar los nuevos límites superior e inferior de integración.

Limite inferior

Cuando
$$x = 0$$
, $u = 0^2 + 1 = 1$.

Limite superior

Cuando $x = 1$, $u = 1^2 + 1 = 2$.

Ahora, es posible sustituir para obtener

$$\int_0^1 x(x^2+1)^3 dx = \frac{1}{2} \int_0^1 (x^2+1)^3 (2x) dx$$
 Límites de integración para x .
$$= \frac{1}{2} \int_1^2 u^3 du$$
 Límites de integración para u .
$$= \frac{1}{2} \left[\frac{u^4}{4} \right]_1^2$$

$$= \frac{1}{2} \left(4 - \frac{1}{4} \right)$$

$$= \frac{15}{2} \cdot$$

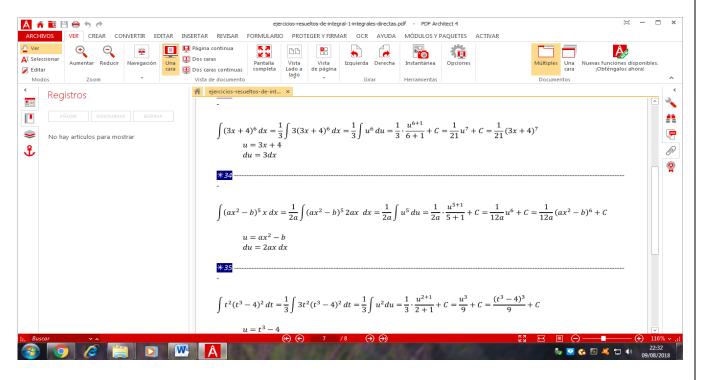
Intentar reescribir la antiderivada o primitiva $\frac{1}{2}(u^4/4)$ en términos de la variable x y calcular la integral definida en los límites originales de integración, como se muestra.

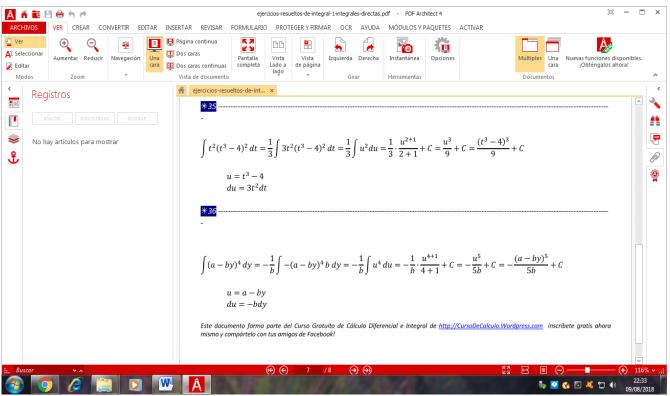
$$\frac{1}{2} \left[\frac{u^4}{4} \right]_1^2 = \frac{1}{2} \left[\frac{(x^2 + 1)^4}{4} \right]_0^1$$
$$= \frac{1}{2} \left(4 - \frac{1}{4} \right) = \frac{15}{8}$$

Notar que se obtiene el mismo resultado.

luisca GUIA DE APOYO Y PREPARACION Asignatura : calculo int

Taller 2





Correo: Luisocastillo260@gmail.com

Página: https://luiscastillo-260.iimdo.com/

Página 8 de 10

luisca GUIA DE APOYO Y PREPARACION Asignatura : calculo int

$$1. \int \frac{x}{x^2 + 1} dx$$

Sol:
$$\frac{1}{2}\operatorname{Ln}(x^2+1)+k$$

$$\int \frac{x}{x^2 + 1} dx = \frac{1}{2} \int \frac{2x}{x^2 + 1} dx = \left\{ \int \frac{f'}{f} dx = \operatorname{Ln} |f| + k \right\} = \frac{1}{2} \operatorname{Ln}(x^2 + 1) + k$$

$$2. \quad \int \frac{dx}{1-x}$$

Sol:
$$-\mathbf{L}\mathbf{n} \left| \mathbf{1} - \mathbf{x} \right| + \mathbf{k}$$

$$\int \frac{dx}{1-x} = -\int \frac{-1}{1-x} \cdot dx = \left\{ \int \frac{f'}{f} dx = \operatorname{Ln} \left| f \right| + k \right\} = -\operatorname{Ln} \left| 1 - x \right| + k$$

$$3. \int \frac{dx}{3x-7}$$

Sol:
$$\frac{1}{3}$$
L $\left|3x-7\right|+k$

$$\int \frac{dx}{3x-7} = \frac{1}{3} \int \frac{3}{3x-7} \cdot dx = \left\{ \int \frac{f'}{f} dx = \text{Ln} |f| + k \right\} = \frac{1}{3} \text{Ln} |3x-7| + k$$

lui/ca GUIA DE APOYO Y PREPARACION A/ignatura : calculo int Taller 2

EJEMPLO 2 Evalúe $\int \sqrt{2x+1} dx$.

SOLUCIÓN | Sea u = 2x + 1. Entonces du = 2 dx, de modo que dx = du/2. De esta forma, la regla de sustitución da

$$\int \sqrt{2x+1} \, dx = \int \sqrt{u} \, \frac{du}{2} = \frac{1}{2} \int u^{1/2} \, du$$
$$= \frac{1}{2} \cdot \frac{u^{3/2}}{3/2} + C = \frac{1}{3} u^{3/2} + C$$
$$= \frac{1}{3} (2x+1)^{3/2} + C$$

SOLUCIÓN 2 Otra sustitución posible es $u = \sqrt{2x+1}$. Entonces

$$du = \frac{dx}{\sqrt{2x+1}}$$
 de suerte que $dx = \sqrt{2x+1} du = u du$

(O bien, observe que $u^2 = 2x + 1$, de suerte que 2u du = 2 dx.) En consecuencia,

$$\int \sqrt{2x+1} \, dx = \int u \cdot u \, du = \int u^2 \, du$$
$$= \frac{u^3}{3} + C = \frac{1}{3} (2x+1)^{3/2} + C$$

EJEMPLO 5 Calcule $\int \sqrt{1+x^2} x^5 dx$.

SOLUCIÓN Una sustitución aceptable es más obvia si factoriza x^5 como $x^4 \cdot x$. Sea $u = 1 + x^2$. Entonces du = 2x dx, de modo que x dx = du/2. También, $x^2 = u - 1$, de modo que $x^4 = (u - 1)^2$:

$$\int \sqrt{1+x^2} \, x^5 \, dx = \int \sqrt{1+x^2} \, x^4 \cdot x \, dx$$

$$= \int \sqrt{u} \, (u-1)^2 \, \frac{du}{2} = \frac{1}{2} \int \sqrt{u} \, (u^2 - 2u + 1) \, du$$

$$= \frac{1}{2} \int (u^{5/2} - 2u^{3/2} + u^{1/2}) \, du$$

$$= \frac{1}{2} \left(\frac{2}{7} u^{7/2} - 2 \cdot \frac{2}{5} u^{5/2} + \frac{2}{3} u^{3/2}\right) + C$$

$$= \frac{1}{2} (1+x^2)^{7/2} - \frac{2}{5} (1+x^2)^{5/2} + \frac{1}{3} (1+x^2)^{3/2} + C$$